作者单位
摘要
1 之江实验室,浙江 杭州 311121
2 浙江大学材料科学与工程学院,浙江 杭州 310058
超快激光直写技术可以高精度加工任意三维波导结构,从而实现新型拓扑模型以及集成化的拓扑光子器件。通过经典的拓扑结构(如一维二元复式晶格、非对角Aubry-André-Harper晶格、蜂窝晶格),阐述拓扑光学的基本原理和现象(如Thouless泵浦,手性边缘态、局域态与拓扑不变量之间的关系),介绍最新的拓扑光子学进展与应用(如高阶拓扑绝缘体、Floquet拓扑绝缘体、非厄米拓扑、非线性拓扑,以及量子拓扑保护),重点综述在超快激光直写平台下实现的拓扑现象与应用。
激光光学 光子拓扑绝缘体 超快激光直写 Floquet光子拓扑绝缘体 非厄米拓扑 非线性拓扑 光子芯片 
中国激光
2024, 51(4): 0402401
作者单位
摘要
1 之江实验室,浙江 杭州 311121
2 浙江大学光电科学与工程学院,浙江 杭州 310027
3 浙江大学材料科学与工程学院,浙江 杭州 310058
大数据时代海量数据的产生和积累对存储性能提出了更高的要求,因此实现低能耗、长期安全、高效的数据存储是数字化社会建设的当务之急。聚焦以玻璃作为存储介质的光存储技术,概述了该技术的研究进展和维度复用情况,并对其面临的挑战和机遇进行了展望。同时探讨了光场调控技术与深度学习技术在光存储领域中的潜在应用,以期为该领域的研究者提供相关参考。
全息 激光材料加工 光存储 玻璃 多维复用 光场调控 深度学习 
中国激光
2023, 50(18): 1813002
Author Affiliations
Abstract
1 State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University Hangzhou, China
2 Zhejiang Lab, Hangzhou, China
Inscribing functional micro-nano-structures in transparent dielectrics enables constructing all-inorganic photonic devices with excellent integration, robustness, and durability, but remains a great challenge for conventional fabrication techniques. Recently, ultrafast laser-induced self-organization engineering has emerged as a promising rapid prototyping platform that opens up facile and universal approaches for constructing various advanced nanophotonic elements and attracted tremendous attention all over the world. This paper summarizes the history and important milestones in the development of ultrafast laser-induced self-organized nanostructuring (ULSN) in transparent dielectrics and reviews recent research progresses by introducing newly reported physical phenomena, theoretical mechanisms/models, regulation techniques, and engineering applications, where representative works related to next-generation light manipulation, data storage, optical detecting are discussed in detail. This paper also presents an outlook on the challenges and future trends of ULSN, and important issues merit further exploration.
PhotoniX
2023, 4(1): 24
Author Affiliations
Abstract
Long-term optical data storage (ODS) technology is essential to break the bottleneck of high energy consumption for information storage in the current era of big data. Here, ODS with an ultralong lifetime of 2×107 years is attained with single ultrafast laser pulse induced reduction of Eu3+ ions and tailoring of optical properties inside the Eu-doped aluminosilicate glasses. We demonstrate that the induced local modifications in the glass can stand against the temperature of up to 970 K and strong ultraviolet light irradiation with the power density of 100 kW/cm2. Furthermore, the active ions of Eu2+ exhibit strong and broadband emission with the full width at half maximum reaching 190 nm, and the photoluminescence (PL) is flexibly tunable in the whole visible region by regulating the alkaline earth metal ions in the glasses. The developed technology and materials will be of great significance in photonic applications such as long-term ODS.Long-term optical data storage (ODS) technology is essential to break the bottleneck of high energy consumption for information storage in the current era of big data. Here, ODS with an ultralong lifetime of 2×107 years is attained with single ultrafast laser pulse induced reduction of Eu3+ ions and tailoring of optical properties inside the Eu-doped aluminosilicate glasses. We demonstrate that the induced local modifications in the glass can stand against the temperature of up to 970 K and strong ultraviolet light irradiation with the power density of 100 kW/cm2. Furthermore, the active ions of Eu2+ exhibit strong and broadband emission with the full width at half maximum reaching 190 nm, and the photoluminescence (PL) is flexibly tunable in the whole visible region by regulating the alkaline earth metal ions in the glasses. The developed technology and materials will be of great significance in photonic applications such as long-term ODS.
ultrafast laser photoluminescence tailoring ultralong lifetime optical data storage 
Opto-Electronic Advances
2023, 6(1): 220008
Author Affiliations
Abstract
The past two decades have seen a drastic progress in the development of semiconducting metal-halide perovskites (MHPs) from both the fundamentally scientific and technological points of view. The excellent optoelectronic properties and device performance make perovskites very attractive to the researchers in materials, physics, chemistry and so on. To fully explore the potential of perovskites in the applications, various techniques have been demonstrated to synthesize perovskites, modify their structures, and create patterns and devices. Among them, photo-processing has been revealed to be a facile and general technique to achieve these aims. In this review, we discuss the mechanisms of photo-processing of perovskites and summarize the recent progress in the photo-processing of perovskites for synthesis, patterning, ion exchange, phase transition, assembly, and ion migration and redistribution. The applications of photo-processed perovskites in photovoltaic devices, lasers, photodetectors, light-emitting diodes (LEDs), and optical data storage and encryption are also discussed. Finally, we provide an outlook on photo-processing of perovskites and propose the promising directions for future researches. This review is of significance to the researches and applications of perovskites and also to uncover new views on the light-matter interactions.The past two decades have seen a drastic progress in the development of semiconducting metal-halide perovskites (MHPs) from both the fundamentally scientific and technological points of view. The excellent optoelectronic properties and device performance make perovskites very attractive to the researchers in materials, physics, chemistry and so on. To fully explore the potential of perovskites in the applications, various techniques have been demonstrated to synthesize perovskites, modify their structures, and create patterns and devices. Among them, photo-processing has been revealed to be a facile and general technique to achieve these aims. In this review, we discuss the mechanisms of photo-processing of perovskites and summarize the recent progress in the photo-processing of perovskites for synthesis, patterning, ion exchange, phase transition, assembly, and ion migration and redistribution. The applications of photo-processed perovskites in photovoltaic devices, lasers, photodetectors, light-emitting diodes (LEDs), and optical data storage and encryption are also discussed. Finally, we provide an outlook on photo-processing of perovskites and propose the promising directions for future researches. This review is of significance to the researches and applications of perovskites and also to uncover new views on the light-matter interactions.
perovskites photo-processing optical properties opto-electronic devices 
Opto-Electronic Science
2022, 1(11): 220014
李昕阔 1,2,*谭德志 1,2刘艺 1孙轲 3[ ... ]邱建荣 3
作者单位
摘要
1 浙江大学材料科学与工程学院,杭州 310058
2 之江实验室,杭州 311121
3 浙江大学光电科学与工程学院,杭州 310027
超快激光直写技术由于其灵活性、高效性和良好的方向性,可以三维选择性地在材料内部进行加工,被广泛应用于玻璃的微晶化及其器件的制备中,在光储存、波导激光器、光子电路和集成光子芯片等领域有着广泛的应用前景。本文简要概述了超快激光在玻璃内部诱导析晶的原理,晶态/非晶态自组织周期性结构的形成机制,以及超快激光在玻璃三维空间中诱导析晶的最新研究进展,总结了通过控制激光参数和玻璃成分等实现对结晶形态、结构及光学性质调控的相关研究,并对所直写的微纳结构在非线性器件、光储存、激光器等领域的应用和发展方向进行了概述与展望。
微晶玻璃 超快激光直写 析晶原理 自组织周期性结构 热积累效应 光存储 glassceramics ultrafast laser direct writing crystallization principle selforganized periodic structure heat accumulation effect optical storage 
硅酸盐通报
2022, 41(11): 3781
作者单位
摘要
1 浙江大学光电科学与工程学院,浙江 杭州 310027
2 之江实验室,浙江 杭州 311121
超快激光具有超快、超强和超宽频谱的特点,聚焦的超快激光可以瞬间在透明材料内部产生极高的温度和压强。在这种局域极端条件下,材料的内部结构会发生许多新奇的变化。以全无机卤化物钙钛矿纳米晶(PCN)为例,阐述了超快激光诱导玻璃内部形核和析出纳米晶的基本原理,总结了近年来利用超快激光技术在玻璃内部析出全无机PCN的研究现状,分析了其在光存储和彩色显示等领域中的应用前景。
超快光学 超快激光 可控析晶 纳米晶 钙钛矿 玻璃 
光学学报
2022, 42(17): 1732001
Author Affiliations
Abstract
1 Ningbo Femto & Nano Laser Technology Co., Ltd., Ningbo 315000, China
2 Zhejiang Lab, Hangzhou 311100, China
3 Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
4 State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
5 Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, China
6 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
We report on a conceptually new type of waveguide in glass by femtosecond laser direct writing, namely, photonic lattice-like waveguide (PLLW). The PLLW’s core consists of well-distributed and densified tracks with a sub-micron size of 0.62 µm in width. Specifically, a PLLW inscribed as hexagonal-shape input with a ring-shape output side was implemented to converse Gaussian mode to doughnut-like mode, and high conversion efficiency was obtained with a low insertion loss of 1.65 dB at 976 nm. This work provides a new freedom for design and fabrication of the refractive index profile of waveguides with sub-micron resolution and broadens the functionalities and application scenarios of femtosecond laser direct-writing waveguides in future 3D integrated photonic systems.
femtosecond laser glass material laser direct-writing waveguide light mode conversion 
Chinese Optics Letters
2022, 20(3): 031406
Author Affiliations
Abstract
1 State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
2 Zhejiang Lab, Hangzhou 311100, China
3 State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
4 CAS Center for Excellence in Ultra-Intense Laser Science, Chinese Academy of Sciences, Shanghai 201800, China
Printing stable color with a lithography-free and environment-friendly technique is in high demand for applications. We report a facile strategy of ultrafast laser direct writing (ULDW) to produce large-scale embedded structural colors inside transparent solids. The diffraction effect of gratings enables effective generation of structural colors across the entire visible spectrum. The structural colors inside the fused silica glass have been demonstrated to exhibit excellent thermal stability under high temperature up to 1200°C, which promises that the written information can be stable for long time even with unlimited lifetime at room temperature. The structural colors in the applications of coloring, anti-counterfeiting, and information storage are also demonstrated. Our studies indicate that the presented ULDW allows for fabricating large-scale and high thermal-stability structural colors with prospects of three-dimensional patterning, which will find various applications, especially under harsh conditions such as high temperature.
ultrafast laser direct writing structural color glass information storage 
Chinese Optics Letters
2022, 20(3): 030501
Author Affiliations
Abstract
1 Zhejiang University, College of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, Hangzhou, China
2 Chinese Academy of Sciences, CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai, China
Integrated photonics is attracting considerable attention and has found many applications in both classical and quantum optics, fulfilling the requirements for the ever-growing complexity in modern optical experiments and big data communication. Femtosecond (fs) laser direct writing (FLDW) is an acknowledged technique for producing waveguides (WGs) in transparent glass that have been used to construct complex integrated photonic devices. FLDW possesses unique features, such as three-dimensional fabrication geometry, rapid prototyping, and single step fabrication, which are important for integrated communication devices and quantum photonic and astrophotonic technologies. To fully take advantage of FLDW, considerable efforts have been made to produce WGs over a large depth with low propagation loss, coupling loss, bend loss, and highly symmetrical mode field. We summarize the improved techniques as well as the mechanisms for writing high-performance WGs with controllable morphology of cross-section, highly symmetrical mode field, low loss, and high processing uniformity and efficiency, and discuss the recent progress of WGs in photonic integrated devices for communication, topological physics, quantum information processing, and astrophotonics. Prospective challenges and future research directions in this field are also pointed out.
photonic integrated circuit waveguides femtosecond laser direct writing improved techniques photonic devices 
Advanced Photonics
2021, 3(2): 024002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!